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Various theoretical aspects of peristaltic motion have attracted considerable 
attention in the recent literature. There also exists a difference of opinion con- 
cerning the definition of peristaltic reflux. Thus far, there has been no completely 
satisfactory experimental verification of any of the theoretical analyses. The 
present article describes some details of an experimental work which was 
carried out to verify the theoretical analysis of peristaltic transport in a two- 
dimensional channel with one fixed wall and one flexible wall on which a travel- 
ling sine wave is imposed. An approximate correction for finite width was in- 
troduced. Comparison of the theoretical and experimental results shows a good 
agreement and gives verification to the theoretical analysis. In  the light of the 
experimental results, a discussion of the different definitions of peristaltic reflux 
is presented. 

1. Introduction 
Recently, various theoretjcal aspects of peristaltic transport have attracted 

considerable attention (see Barton & Raynor 1968; Burns & Parks 1967; Fung 
& Yih 1968; Hanin 1968; Shapiro 1967; Shapiro, Jaffrin & Weinberg 1969; 
Yin & Fung 1969; Yin 1970; Zien & Ostrach 1970). It is desirable to verify the 
theoretical analyses with experimental work. For practical reasons, the simplest 
experimental set-up utilizes a rectangular cross-section channel with three fixed 
walls and one flexible wall on which the travelling wave is imposed. Latham 
(1966) performed a number of experiments using a similar geometry which was 
obtained by flattening a round plastic tube. He compared the experimental results 
with the results obtained from the two-dimensional, long wavelength, zero Rey- 
nolds number theory of Shapiro (1967). Besides completely ignoring the effects 
of the side walls of the tube, Latham made a direct comparison between the 
experiment, which had only one waving wall, and the theory in which travelling 
waves were imposed on both walls of a two-dimensional channel. Therefore, his 
comparison between theory and experiment was not entirely satisfactory. 

The purpose of the present article is to offer a more detailed comparison be- 
tween theory and experiment for small amplitude peristaltic motion at finite 
Reynolds number and finite wavelength. 

In  order to employ a theoretical model which more closely matched the 
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experimental apparatus, the theoretical analysis of Fung & Yih (1968) was ex- 
tended and modified to apply to the case of a two-dimensional channel with one 
fixed wall and one flexible wall. An approximate method was then introduced to 
correct for the three-dimensional effects due to finite width-to-height ratio. The 
correct theoretical results are compared with the experimental results. 

In  addition to studying the time-averaged flow quantities, details of the fluid 
motion were studied by examination of the particle trajectories. Some details 
of the theoretical analysis are presented in 5 2. Details of the experimental work 
undertaken to verify the analysis are presented in 3 3. Results and conclusions 
are discussed in 5 4. 

2. Theoretical analysis 
The analysis was made for the case of a two-dimensional channel with one fixed 

wall and one flexible wall on which a travelling sine wave is imposed (see figure 1) .  
This work is an extension and modification of the corresponding analysis for the 
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FIGURE 1. Geometry of two-dimensional channel and travelling wave system. 
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case of a two-dimensional channel for which travelling sine waves were imposed 
on both walls (Fung & Yih 1968). In  the present analysis, in addition to the time- 
averaged velocity and flow rate expressions, explioit expressions for the axial 
and transverse velocity components are obtained. A numerical integration of the 
velocity component expressions yields the particle trajectories. 

The basic assumptions used herein are the same as in the previous analysis. 
A small amplitude travelling sine wave is assumed to be imposed on the flexible 
wall of a two-dimensional channel. The fluid contained within the channel is 
assumed to be Newtonian viscous, homogeneous, a.nd incompressible. The fluid 
is assumed to satisfy the non-slip conditions at the boundary with the walls. 
The waving wall is assumed to have only transverse displacements without any 
lateral displacement. In  order to clearly demonstrate the effect of the peristaltic 
motion itself, the analysis is carried out for the special case of a, zero mean im- 
posed pressure gradient. 

Since the methods of solution and the notations are identical to those used in 
the previous analysis (Fung & Yih 1968), only the most important equations 
will be presented herein. Details can be found in the dissertation by Yin (1970). 
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The governing equation of motion in non-dimensional form is 
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where Re = ch/v is the Reynolds number based on channel mean half-height h, 
wave speed c, and kinematicviscosity v. @ is the two-dimensional stream function 
and V 2  is the two-dimensional Laplacian operator. The wavy channel is illustrated 
in figure 1 in which physical variables are shown. In  subsequent equations and 
figures non-dimensional variables are used. The normalization is based on h and c,  
so that P = x/h,  y" = y/h, ii = U / C ,  v" = v/c, 

f = q/h, $ = $/(ch), Z = ct/h, @ = pl(pc2). 

where x, y,  u and v are the axial and transverse co-ordinates and velocity com- 
ponents respectively, q is the transverse displacement of the wall, t time, p 
fluid pressure and p density. For convenience, all of the +., signs are omitted 
henceforth. 

The boundary conditions governing the problems are 

7 = EC0sa(x-t), (2) 

a$/ay = 0, a@/ax = 0 at y = 1, (3) 

a@/ay = 0, a@/ax = CLB sin a(x - t )  at y = - 1 - 7, (4) 

where B is the amplitude ratio a/h, and a is the wave-number 2nh,/h. Perturbation 
solutions in the parameter B are assumed in the form 

$ = $o+"@1+E2$2+..., 

($) = ( g ) o + B ( g ) l + B 2 ( g ) 2 + . . . .  

The term (aplax), is the zeroth-order static pressure gradient. For an acid test 
of the theory we shall consider the case (ap/8x)o = 0. Then @o = 0, and we shall 
show later that the time average of the first-order term in pressure gradient, 
(ap/ax),, vanishes. Interestingly, the fist-order terms of the time-averaged 
mean velocity, and mean mass flow, also vanish in this case; so that the mean 
pressure, velocity, and mass flow are all proportional to e2. The functions @o, $,, 
etc., defined in (5) can be shown t o  be 

( 7 4  

(7b) 

2@1 = @,(y) eiab-t)  + @*( e-idz-t) 
1 Y )  

2p2 = @20(y) + @22(y) eZia@-t)+ @* 22 ( Y )  e-2ia(z-t). 

Substituting (6) and (7) into (l), (3) and (4) and equating the various powers of B, 

one obtains, for the case of zero imposed pressure gradient, the following equa- 
tions and boundary conditions for the first-order term : 

a;( - 1) = 0, @;(1) = 0, 
Q1( - 1) = - 1, a1(1) = 0. 
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@$J = - &aRe( @, @fff - @T a:)’, 

($ - 4a2) [g - (4a2 - ZiaR,) = &Re (@; Wi - @l@r), 1 
@;,( - 1)  - +[q( - 1) + a;”( - l)] = 0,  

%&) = 0,  

@A,( - 1) -&a);( - 1)  = 0, 

QZ2( - 1) -to;( - 1) = 0,  

@i2(1) = @22(1) = 0. 

In  the above, the primes denote differentiation with respect to y, the asterisks 
denote complex conjugate, and 

p2 = a2-iaRe. (14) 

(15) 

The solution to (8), subject to the boundary conditions (9), is 

Q1 = Cl sinh (&) + C2 cosh (By) + C3 sinh (cxy) + C, cosh (ccy), 

where C,, C,, C3 and C, are integration constants. 

tion @Ao can be posed in the form 
On substituting (15) into (10) to (13), one can solve for Q2, and The func- 

@A0 = Ml y2 +M2y +M3 + Fk!/) (16) 

where M,,M,, M, are integration constants and F ( y )  is a complicated function 
of y which was evaluated and is presented in full in Yin (1970). The constants 
Ml, M,, M, are related through (lza), (12b). If one takes the time-average of the 
Navier-Stokes equation over one wave period to obtain a relation between the 
mean flow and mean pressure gradient, one obtains 

Thus N, is proportional to the second-order mean pressure gradient and must be 
specified by the end conditions for each particular problem. With Ml specified, 
the expression for the time-averaged mean axial velocity is 

;ii = p@;o = &2(F(y) - +[F( 1) + F( - l)] + 95 

+ r - K+ irF( - 1) - JWII Y - M,( 1 - Y ~ ) I ,  (1s) 

where 5 = &[@;( - 1) + a:”( - l)]. 
The mean flow per unit width is obtained by integrating (1  8) : 

The mean volume flow expressed by (19) pertains to a two-dimensional channel 
of infinite width. In  order to compare this quantity with the results from the 
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experimental work in which the width of the channel is finite, a correction factor 
to take into account the three-dimensional effect of the side walls is needed. 

An approximate correction factor to account for the side-wall effect was 
obtained by the following considerations. The specific resistance of a rectangular 
cross-section uniform channel as a function of the width-to-height ratio? in a 
steady flow with a constant axial pressure gradient is well known, see, for 
instance, Rouse (1959) or Purday (1949). The result can be expressed as 

where dpldx is the pressure gradient, p is the fluid viscosity, U is the mean velo- 
city of flow, h is the channel half-height, w is the half-width, and K is the specific 
resistance factor which is a function of wlh, as shown in table 1. If the channel is 

W / h  1 2 3 4 5 10 03 

K 28-6 17.5 15-3 14.2 13.7 12.8 12 

TABLE 1. The specific resistance factor K(w/h) 

two-dimensional, the corresponding resistance factor will be K(co) = 12 as 
wlh-tco. The mean flow per unit width of the channel is smaller by the factor 
K(co)/K(w/h) because of the three-dimensional effect of the side walls. We 
assume that the same factor applies to the peristaltic flow, so that the mean flow 
per unit width is given by modifyingij of (19) with the factor named above 

The validity of this modification was checked experimentally, as will be described 
later. 

must be 
determined from (1 1) and (13) : 

To determine the velocity components u, v up to e2 the function 

D2 cosh ( 2 4  + J ,  sinh (By) sinh (ay) + J ,  sinh (By) cosh (ay) 
+2(a2-/32) 

+ J3 cosh (Py) sinh (ay) + J ,  cosh (By) cosh (ay). (22) 

The constants J,, . . ., J4 arise from the particular solution to (1 1) and are related 
to C,, . . . , C,. The constants F,, 3,, D,, and D, arise from the complementary 
functions of (1 1) and can also be expressed, after considerable algebraic manipula- 
tion, in terms of C,, . .., C,. 

t Henceforth, the expression ' width-to-height ratio ' signifies channel half-width/ 
channel mean half-height. 

7 ==M 47 
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With these solutions the stream function 9 is determined up to €2 and the velo- 
city components are 

1 u = dx/& = &[@l(y) eia(x-t) + @*'( e-idz-l) 
1 Y) 

+ &e2[@L0(y) + cDL,(y) e2ia(zPt) + @&'(y) e-2ia(z-t)], 

- 4e2[2ia<D,,(y) etiafZ-t) - 2ia@z2(y) e-2ia(.c-t)]. 
1 = dy/& = - i€[ia@ ( ei4Z-t) - i&*( e-ia(z-t) 1 Y) 1 Y) 

(23) 

An integration of (23) yields the trajectory x( t ) ,  y ( t )  for any initial particle 
location. This integration was performed numerically by employing an extra- 
polation method devised by Bulirsch & Stoer (1966). An independent solution 
was also carried out using a. standard Runge-Kutta-Dill numerical integration 
scheme. The two methods gave the same results to four significant figures, but the 
extrapolation method was said to be more accurate; therefore, all of the particle 
trajectories were obtained by using the extrapolation method. Calculation of 
one set of particle trajectories required between 6 and lOmin of computer time. 
Because of the considerable cost, only a limited number of cases were calculated. 
The results of the numerical calculations for the particle trajectories for a few 
cases and a comparison with the experimental results will be deferred to $ 4  
pending the discussion of the experimental work to be presented in $3.  

3. Experimental work 
Apparatus 

A rectangular cross-section channel with the top and side walls fixed and with a 
travelling wave imposed on the bottom wall was used. A sketch of the centre 
portion of the apparatus is shown in figure 2. A schematic diagram of the entire 
apparatus is shown in figure 3, and a photograph of the actual apparatus is shown 
in figure 4 (plate 1). The top, ends, and side walls, were made of lucite and the 
flexible bottom wall was a 0.079 cm thick neoprene sheet, slightly stretched 
and attached to the ends and sides of the channel. The overall channel length was 
81-28 cm, its total height was 1-27 cm, and its width was 14-61 cm. These dimen- 
sions yielded a width-to-height ratio of 11.5 and a length-to-mean height ratio 
of 64. 

The travelling sine wave was imposed on the ffexible bottom wall by a series 
of moving plaster? blocks, B (figure a), cast and polished to  the desired ampli- 
tude and wavelength. The blocks were made so that aluminium plates with a 
series of teeth milled into their lower sides could be attached to the bottom of 
the blocks. These teeth were engaged by matching teeth of a timing belt C. 
The belt was driven by a speed reducer motor D controlled by a speed control 
unit to enable a range of wave speeds to be obtained. The weight of the fluid 
on top of the thin rubber membrane caused it to follow approximately the con- 
tour of the blocks. However, it was necessary to measure directly the vertical 
displacement of the membrane to obtain the actual wave amplitude. 

The wave amplitude was measured by a probe connected to the core of a San- 

t Toolstone, Dick Ellis Co., Los Angeles, California. 
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born linear differential transformer. As the blocks moved, the probe would follow 
the motion of the membrane and move the core accordingly. The transformer 
output was recorded on a strip chart recorder from which the actual wave ampli- 
tude could be calculated. 

The longitudinal pressure gradient in the channel was controlled by two 
main reservoirs. The main reservoir at the upstream end had a stand pipe E 
which was fixed in height. The fluid level was maintained at  this height by means 
of an external recirculating pump (not shown in figure 4) which pumped an excess 

Neoprene membrane 

Aluminium pla 

Lucite wall' 

FIUKRE 2. Sketch of the test section of the apparatus. 

J- Adjustable standpipe 

Heat 
exchanger 7 
====I 
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,------I I; ----- ' -  ----- 
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sump -f3 I Timinibelt Plaster blockJ Neoprene membrane ' 
Di,iv!: pulley 

Recirculating pump 

FIGURE 3. Schematic diagram of the apparatus. 
7-2 
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of fluid into this reservoir. The overflow was then collected and recirculated by 
the external pump. The downstream reservoir had a height which could be varied 
by means of a movable standpipe F. The mean imposed pressure gradient was 
varied by raising or lowering this pipe relative to the upstream standpipe level. 
In both reservoirs the effects of surface tension were minimized by making the 
standpipes as large as possible with a very sharp top edge. The upstream stand- 
pipe was actually the reservoir wall itself. Recirculating fluid overflowed from 
inside the reservoir over the top edge and was collected by a trough surrounding 
the reservoir. The downstream standpipe was made slightly smaller than the 
reservoir and was circular. The standpipe was made movable by putting a lid on 
the reservoir with a circular hole slightly larger than the Standpipe cut into the 
lid. The standpipe was inserted into this hole which had a rubber O-ring fitted 
into the rim. The O-ring sealed the gap while still allowing freedom of movement. 

Fluid motion was studied by injecting dye at the test section A which was 
centred along the width and length of the channel. Any side-wall effects were 
expected to be minimal at the centre of the channel since the motion was sym- 
metric between the side walls. In  addition, results from classical fluid mechanics 
indicated that for steady flow a t  Reynolds numbers of order 10, the inlet length 
for a two-dimensional channel of the same dimensions as the present channel 
was of the order of the mean channel height. For small amplitude peristaltic 
waves, the end effects should not differ appreciably from those for steady flow 
conditions. Since the test section was located many times the mean channel 
height from the end, the end effects could be assumed to be negligible. Further- 
more, by choosing the wavelength so that an integral number of waves was con- 
tained in the channel, the conditions equivalent to an infinite train of waves could 
be obtained. Therefore, for the apparatus used in this study, the fluid motion in 
the test section closely approximated the motion in an infinitely long two- 
dimensional channel. 

The fluid was subjected to considerable viscous heating as it was continually 
being recirculated by the external pump. It was necessary to control the fluid 
temperature. This was accomplished by building a heat exchanger around the 
exit portion of the recirculating pump. The temperature in the water jacket was 
controlled by a recirculating cooler which then enabled the fluid in the channel 
to be kept at constant temperature. For all of the tests reported herein, the fluid 
was maintained at  25 i- 0.2 "C. 

The fluid used in all cases was Dow Corning 200 series silicone fluid which had 
a kinematic viscosity of 200 centistokes at 25 "C and a specific gravity of 0-97. 

Procedure 
Under a zero imposed pressure gradient condition, the total volume of fluid 
transported by the peristaltic motion of the walls as a function of the Reynolds 
number was measured a t  a given amplitude ratio (wave amplitude/channel 
mean half-height) and wave-number (277 - channel mean half-height/wavelength). 
Experiments were performed with two sets of waves having measured wave 
amplitudes of 0.256 & 0.006 cm and 0.174 0-006 ern respectively. In  dimension- 
less quantities the amplitude ratios were 0-41 & 0.01 and 0.30 * 0.01 and the 
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wave-numbers were 0.385 and 0.353, respectively. By moving the blocks at 
different speeds, a range of Reynolds numbers from 0-5 to 2.5 was obtained. 

By setting the downstream standpipe to the same height as the upstream 
reservoir, a condition of zero imposed pressure gradient could be maintained. 
At any given Reynolds number the steady-state volume of fluid transported in 
a given time interval was measured by collecting the overflow from the down- 
stream standpipe. After suitable non-dimensionalization, the experimentally 
measured volume flow was then compared with the flow from theoretical pre- 
diction (see equations (21) and (19)). In  each case the theoretical two-dimensional 
prediction of the flow was corrected by the scheme outlined previously to 
take into account the side-wall effect of the finite width-to-height ratio of the 
experimental apparatus. 

In  order to test experimentally the validity of applying the steady-state 
side-wall correction, two inserts of different size were placed into the channel 
to change the width-to-mean height ratio from 11.5 to 9-5 and 5.5. The inserts 
were made by glueing a piece of foam rubber to the bottom of a thin piece of 
lucite cut to the desired width, and running the length of the channel. The foam 
rubber was necessary to allow the flexible bottom wall to move vertically with 
the waves. The lucite and foam were covered with a polyethylene sheet to make 
the entire insert leakproof. The insert was held in place by the pressure exerted 
by the plaster blocks on the compressed foam rubber. The volume flow was then 
obtained as described previously and compared to the theoretically predicted 
flow with the correction factor for each width-to-height ratio included. 

A small error in setting the zero imposed pressure gradient condition could 
produce a large error in the measured volume of fluid. The sensitivity of the flow 
to the accuracy of adjustment of the downstream standpipe was then tested by 
lowering and raising the pipe by a small amount from the assumed zero pressure 
gradient position. A lowering or raising of the pipe by 0.76 mm corresponded 
to imposing a pressure gradient of T 0.001cm H,O per cm on the system. 
Volume flows corresponding to both positions of the standpipe were measured 
and compared with the value for the assumed zero-pressure-gradient position. 

Since the theoretical solution is obtained by expansion in powers of E (ampli- 
tude ratio), the accuracy of the theory is best when E is small. However, experi- 
mentally, a lower limit of usable amplitude ratio exists because the highest 
accuracy with which the moving blocks could be made was about & 0.06mm. 
If e is too small, the sine waves will be of poor quality and the accuracy of the 
amplitude of the successive waves will be low. A compromise satisfying the accur- 
acy requirements of both the theory and experiment for the particle trajectory 
study was chosen at E = 0.2, and was accomplished by modifying the channel 
height with a pair of new spacers. The trajectory data to be presented were 
obtained from a channel with a length-to-height ratio of 48, a width-to-height 
ratio of 8.0 and E = 0.20 

Two methods were used to visualize the fluid motions. The first method 
consisted of injecting a line of tracer particles into the test section and photo- 
graphing the subsequent distortion of the line. The tracer consisted of a sus- 
pension of finely powdered graphite in the same silicone fluid injected through a 

0.0055 (S.D.). 
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no. 19-gauge hypodermic needle which was retracted gradually so as to leave a 
line. The distortion of the line was photographed with a motion picture camera. 
The second method consisted of injecting a small bubble of a neutrally buoyant 
immiscible fluid at various heights of the channel and recording the subsequent 
motion, which defined the particle trajectory. It was found that a mixture of 
two parts methanol to three parts milk gave a neutrally buoyant bubble which 
could be easily visualized in all portions of the channel. The particle path of a 
bubble starting at a given location in the channel was then obtained by measuring 
the positions of the bubble from motion picture recordings. These recordings 
were enlarged sixteen times by projecting onto a Vanguard Motion Analyzer,? 
which was equipped with movable cross-hairs connected to dials on which x 
and y positions could be read accurately to 0.001 in. The motion pictures were 
taken at eight frames per second and the position of the bubble was read from 
the analyzer at approximately +see intervals. 

4. Results and discussion 
(a)  Fluid transport 

The results of a series of tests employing three different width-to-height ratios 
and two different amplitude ratios showing the dimensionless volume flow as a 
function of the Reynolds number are illustrated in figure 5(a) and (b) .  The dotted 
line in each figure represents the value of the flow predicted by the two-dimen- 
sional theory and the solid line shows the two-dimensional volume flow corrected 
for the side wall effect. The open circles and triangles in each part of figure 5 
represent the experimental data for amplitude ratios of 0-41 and 0.30 respec- 
tively. Parts (a )  and ( b )  show results for width-to-height ratios of 1.1.5 and 5.5 
respectively. The mean and standard deviation of the flow rate q/qm are shown in 
figure 5 (c) also for the width-to-height ratio of 9.5. 

The filled circles and squares in figure 5(a )  are data, taken with e = 0.41, 
showing the sensitivity of the experiment to the accuracy of the setting of the 
downstream standpipe. The filled circles represent a setting that was 0.76mm 
above the zero mean pressure gradient level, and the filled squares represent a 
setting 0.76mm below the zero level. In  this case, a pressure head of 0.76mm 
corresponds to a pressure gradient of 0.001 em H,O per em. 

In  figure 5 (c) are plotted the ratios of the measured mass flow in channels of 
finite width divided by the corresponding theoretical values of the flow in channels 
of infinite width of the same values of mean height. The mean and standard 
deviation of the experimental data for Reynolds numbers in the range 0-5 to 
2.5 are shown by the symbols. The solid line represents the theoretical approxi- 
mate correction factor K(co)/K(w/h) as proposed in (20). It is seen that at the 
smaller amplitude ratio ( E  = 0.30) the approximation is justified. 

The results shown in figures 5 (a )  and (b )  demonstrate that, for E = 0.41, there 
is about a 20% difference between the theoretical prediction (corrected for 
finite width-to-height ratio) and the experimental data. For 6 = 0.30 the dif- 
ference between theory and experiment is only about 3 %. It is evident that, in 

-f Vanguard Instruments Corp., New York, N.Y. 
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the range tested, both theory and experiment indicate that the volume flow is 
relatively independent of the Reynolds number. The filled symbols in figure 
5 (a)  show that the flow induced by a small amplitude wave is extremely sensitive 
to any mean imposed pressure gradients. Indeed, at the small mean pressure 
gradients purposely induced in the sensitivity tests ( rt 0.001 cm N20/cm), the 
flow could be increased or decreased by about 15 %. 

The closer agreement between theory and experiment at smaller values 
of E is not surprising. Indeed it is gratifying that the agreement is good at  E as 
large as 0.30. The difference between theory and experiment may be attributed 
partly to experimental error, and partly to the basic limitations of the per- 
turbation theory. The experimental error should be of the same magnitude for 
different values of E ,  and is estimated to be a few percent. The theoretical analysis 
is carried out to the order of s2. Apparently for 6 > 0.30 the higher-order terms 
may not be neglected. 

The experimental results can also be compared with the theory of Shapiro 
(1967) who solved the problem of peristalsis on a channel with symmetric waves 
a t  zero Reynolds number and zero wave-number, Re = a = 0. In  the limit 
Re = a ’= E = 0 the theories of Fung & Yih and Shapiro agree. Shapiro’s theory 
can be modified quite easily for the case of one waving wall and corrected for 
side walls, the theoretical results on mean flow agree well with our experimental 
results at E = 0-30, but are about 12 yo larger than the experimental results when 
E = 0-41. Thus although at Re = 0 and a = 0 Shapiro’s solution is valid at all E ,  

at Be = 0.5 to 2 and a = 0.57 the discrepancy becomes significant a t  E = 0.41. 
Recently Zien & Ostrach (1970) have carried out higher-order expansions in a 
(Shapiro’s solution is the zero-order term in this scheme). A comparison of the 
higher-order theory with our experimental results should be done when such an 
analysis is extended to the one-waving-wall case. 

On the other hand, part of these discrepancies could be due to the horizontal 
movement of the wall which was inherent in our experimental channel which 
employed a continuous inextensible belt as the moving wall. When the belt was 
forced to  move up and down, no longitudinal restraint was imposed on the belt ; 
hence a horizontal movement must be induced on the wall by the condition of 
inextensibility. For a sinusoidal wave = E sin a(z - t )  the arc length s is 

s (1 + te2a2) z + Q$a[sin 2a(x - t)  +sin 2 4  + O(e4). 

Hence, within 8: 

Since each particle on the belt is identified with a specific value of s, it  is seen that 
the wall has a horizontal movement of amplitude approximately *e2a. For 
c = 0.3 and 0.4 and a = 0.57, the amplitude of the horizontal movements are 
0.0084 and 0.0114 respectively (in units of the half-width of the channel), i.e. 
0.0214 and 0,0285 times the respective vertical movements. Although these are 
quite small, an exact evaluation of their effect is not available because all theories 
assumed purely vertical movement at the wall. One may note that most practical 



104 F .  C .  P.  Yin and Y .  C. Fzcng 

0 0 0  0 b, 0 0 0  0O0 

e 

0 '  I I I I I I I I I I 
0 0.5 1.0 1.5 2.0 2.5 

Reynolds no., ch/u 

(a )  

O ' I  0.12 

I I I I I I I I I I 
O O '  0.5 1.0 1-5 2.0 2.5 

Reynolds no., chlv 

( b )  

FIGURE 5 (a), ( b ) .  For legend see facing page. 
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peristaltic pumps, including the animal ureters, have this type of wall, therefore, 
it  may be desirable to work out the theoretical effects of the horizontal wall 
movement. 

The results of the small imposed-pressure-gradient tests in figure 5 (a) indicate 
the ineffectiveness of peristaltic pumping when the wave amplitude is not large. 
Practical peristaltic pumps generally occlude the vessel at its narrowest point, 
In  normal human ureters each peristaltic wave sends only a single slug of fluid. 
which is followed by a long segment of tightly squeezed ureter with zero lumen. 

T 
A 
1 

i- 

3 P 

I I l l  I I I  I l t l  

0 2 4 6 8 10 12 14 

Widthlmean height 

(4 
FIGURE 5 .  Comparison of theoretical and experimental results for the dimensionless flow 
vs. Reynolds number. Mean and standard deviation of data for Re in the range 0.5 to 
2.5 are shown. Width-to-height ratio: (a) 11.5; (b )  5.5. E = amplitude ratio = amp/height. 
--- , two-dimensional theory ; ~ , two-dimensional theory corrected for side walls ; 
a, downstream stand pipe raised 0.76 mm; 0, data for E = 0.41; u, downstream stand- 
pipe lowered 0.76 mm; A, data for F = 0.30. (c) Comparison of results for the ratio of the 
flow in a finite width channel to the flow in a two-dimensional channel as a function of 
width-to-height ratio : -, steady state theory for rectangular channel with no moving 
walls; 0, data for E = 0.41; A, data for e = 0.30. 

( b )  Fluid motions 
Photographs of a fluid line taken a t  two-second intervals as the wave progressed 
under a condition of zero static pressure gradient for an amplitude ratio of 
0.20 are shown in figure 6 (plate 2). Similar photographs taken under the con- 
dition of zero net flow are shown in figure 7 (plate 3). For the latter case the down- 
stream reservoir was so raised that no fluid overflowed; consequently, a second- 
order (proportional to e2) static pressure gradient was imposed. In  both figures 
the direction of wave travel is shown by the arrow. The successive frames are 
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arranged in columns. The period of motion in each figure is approximately 10 see. 
The numbers indicate the beginning of successive wave periods. The first frame 
was taken with the blocks at rest, therefore the first few periods show the transient 
motion of the fluid due to the initial motion of the blocks. 

It is difficult to assess quantitatively the motion of the fluid from pictures 
such as those in figures 6 and 7 .  However, the general behaviour of the fluid 
can be observed. Figure 6 shows that when no static pressure gradient was im- 
posed on the system, all portions of the dyed line progressed downstream. 

FIGURE 8. Theoretical trajectories for three particles. Zero volume flow condition with 
E = 0.2, R, = 0.6, a = 0.57. 0 initial location, $ wave ahead of the peak; +, position 
a t  end of one wave period; -, mean position of wavy wall; - - - - , peak amplitude 
of wave; ![/I/, position of fixod wall; c, direction of wave travel. 

Figure 7 is the more interesting case. It shows the distortion of the fluid line 
when there was no net flow in the system. It is seen that, even with the high 
degree of uniformity attained in the peak to peak amplitude of successive waves, 
there still are variations in the flow pattern. The net displacement of the dyed line 
is not monotonic in direction at corresponding times of successive periods, but 
shows some variation in magnitude and direction. In the long run, however, 
in regions near the fixed upper wall, the fluid moved in a direction opposite to 
the wave, while in the centre portion of the channel, the fluid progressed down- 
stream but at a slower rate than that seen in figure 6. Near the moving wall it is 
difficult to assess the motion due to the similar colouring of the dye and the mem- 
brane. Further clarification of the fluid motion was obtained by examining the 
particle trajectories to  be discussed below. 
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Consideration of the accuracy of both theory and experiment suggests that 
the best point for comparison of particle trajectories is at  E = 0-2. The comparison 
is given in figures 8 and 9. The results shown in figure 8 are the theoretically 
predicted trajectories for particles at  three initial locations under a condition 
o f  zero net flow obtained with an amplitude ratio of 0.2. The corresponding ex- 
perimental results are shown in figure 9. As mentioned previously, slight non- 
uniformities in successive waves caused variations in the fluid motion. The re- 
sults shown in figure 9 are typical trajectories of particles which demonstrated a 

3.-- 

FIGURE 9. Expei.imenta1 particle trajectories. Initial locations f period ahead of wave peak. 
Zero volume flow condition with E = 0.2, R, = 0.6, a = 0.57. The error bars denote the 
mean value and standard deviation of the net longitudinal displacement per wave period 
of the many trajectories examined. 

net displacement per wave period close to the mean value obtained from studies 
of many trajectories. The error bar beneath each trajectory in figure 9 depicts 
the mean value and the standard deviation in the net longitudinal displacement 
per wave period. The open square indicates the initial position, the small arrow 
indicates increasing time, the cross mark indicates the position at  the end of one 
wave period, and the large arrow indicates the direction of wave travel. It is seen 
that the theoretical and experimental trajectories are all qualitatively similar 
and that, on the average, the direction of net displacements per wave period is 
the same. The picture of the fluid motions obtained in this manner is also in quali- 
tative agreement with the features shown in figure 7 .  

After each wave period of motion, a particle in general does not return to 
the same position relative to the wave. Therefore, one sees some vertical displace- 
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ment ofa particle at the end of a wave period. It is easy to observe that the par- 
ticle period is different from that of the wave period; but it is not generally 
realized that the difference can be very large. Some authors have contended 
that the particle period is the time for it to return to the initial height, at  which 
point it repeats the same trajectory. But the last statement is in general untrue 

f / / / / / / / / / / / / / / / / / /  / / / / / / / / / /  / / / / / / / / / /  / / / / /  11 

+- 

+a 

FIGURE 10. Theoretically predicted particle trajectories under zero mean imposod pressure 
gradient condition with E = 0.2, R, = 0.6, u = 0.57. Initial locations 4 period ahead of 
wave pcak. 

because at successive instants when the particle reaches the same height the 
horizontal displacements relative to the wave are different and the trajectory 
does not immediately repeat itself. Although eventually every particle path is 
periodic, the period can be grossly different from the successive time interval 
of returning to the same height. For this reason we choose to exhibit the particle 
path on the basis of wave period in figures 8 and 9. 

For the sake of completeness, particle paths under a condition of zero imposed 
pressure gradient obtained theoretically for an amplitude ratio of 0-2 are shown 
in figure 10. 

The qualitative agreement between theory and experiment as shown in figures 
7 ,  8, and 9 lends confidence to the theoretical analysis. It should be pointed out 
that for the case of zero net flow, the results show that a particle near the middle 
of the channel experienced a net downstream displacement in the same direction 
as the wave motion. Particles near the walls showed net upstream displace- 
ments. The directions of  displacements are the same as those found by Shapiro, 
Jaffrin & Weinberg (1969) for the symmetric two-waving-wall-channel case. 
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Finally, the difference in impressions about the fluid motion gained from the 
Eulerian and Lagrangian points of view can be compared. The Eulerian approach 
yields the time-averaged axial velocity under the condition of zero volume flow 
as shown in figure 11(a). The Lagrangian approach yields the corresponding 
net horizontal displacements of fluid particles after each wave period. For sets 
of particles initially located along vertical lines positioned at &wavelength 

4----- -t- _ _  - - - - - - - - - - .. - - - - - - - - - - - - - - - - - - - ._ - - - - - - - - - - - - - - - - - - - . - - - - - - - .- - - - - - - - - .  

(4 (b) 

FIGURE 11. Comparison of time-averaged axial velocity (a)  and net longitudinal displace- 
ment a t  the end of successive wave periods ( 6 ) .  Filled symbols indicate initial location. 
Open symbols denote position at the end of successive wave periods. Dotted lines connect 
particles of corresponding periods. Horizontal scale magnified by a factor of two. Inset 
shows a schematic picture of the initial location of each fluid line. Parameters: 8 = 0.2, 
R, = 0.6, a = 0.57. 

ahead of the peak and a t  the peak of the wave on the lower boundary (as shown 
schematically in the inset), the results are shown in figure 11 (b ) ,  in which the 
initial position of each particle is indicated by a filled symbol and the position 
at each successive wave period is indicated by the open symbol. The displace- 
ment profile per wave period is shown by the numbered dotted lines. The hori- 
zontal scale is magnified by a factor of two in order t o  show the details more 
clearly. The contrast between figures 11 (a) and ( b )  is remarkable. Near the centre 
of the channel, the mean axial velocity is negative, whereas the horizontal dis- 
placement (which may be divided by the wave period to give a kind of pseudo 
velocity) is positive. See the appendix for a more detailed discussion of this point. 

A difference of opinion as to the definition of ‘peristaltic reflux’ exists in the 
literature, see the discussion of Pung & Yih’s (1968) paper by Jaffrin & Shapiro 
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and the author’s closure. Shapiro et al. prefer to define ‘reflux ’ from a Lagrangian 
viewpoint saying that a flow exhibits (reflux’ whenever there is a negative net 
displacement of B particle trajectory. Pung & Yih define ‘reflux’ in the Eulerian 
sense by saying that a flow exhibits ‘reflux’ whenever there is a negative mean 
velocity in the flow field. These two definitions are different, and it is unfortunate 
that the same word was used for two different phenomena. 

(c)  Conclusions 

The experimental work described in this paper demonstrated the following: 
(i) The time-averaged volume flow predicted by the two-dimensional theory 
(valid to second order in the amplitude ratio), corrected approximately for the 
three-dimensional finite width effect, is in close agreement with the experimental 
data for a value of amplitude ratio equal to 0.30. For a value of amplitude ratio 
equal to 0.41, there is about a 20 % difference between theory and experiment, 
due primarily to the limitations in the theory. (ii) The time-averaged volume 
flow is independent of the Reynolds number for the range Re < 2.5. (iii) Peri- 
staltic pumping with small amplitude waves is an ineffective method for trans- 
porting fluid, because a very small imposed pressure gradient can overwhelm 
the effect of the peristalsis. (iv) Particle trajectories for the case of zero volume 
flow were found to agree qualitatively with the theoretical predictions for a 
value of the amplitude ratio equal to 0.2. 

This work was supported by USPHS Grant HE 12494-01 by the National 
Institute of Health, Grant GK-10552 by the National Science Foundation, and 
Grant 1186-67 by U.S. Air Force Office of Scientific Research. 

Appendix. Stroboscopic velocity of fluid particles 
The trajectories of fluid particles in a channel subjected to peristaltic pumping 

as shown in figures 8-11, are rather complex and have periods grossly different 
from that of the wall. A simpler view of the fluid motion is to look at the particles 
stroboscopically. We label each particle initially with co-ordinates a,  b, c; then 
examine its trajectory xi = x$(u, b , c , t )  periodically at an interval equad to the 
wave period, T. At the nth period t = nT the particle is located a t  

(X& (i = 1) 2 ,3) .  

We define an apparent velocity 

which is what the particle would reveal to an observer who looks at  the flow 
with a stroboscopic light of period T. T$ is not the velocity of motion of the particle 
in the ordinary sense. We shall call 5 the stroboscopic velocity of the particle. 

The contrast between 
figures 11 ( a )  and (b)  shows that 7, has little resemblance with the mean velocity 
Ed, which can be defined equivalently either by averaging over time at a fixed 

Figure 11 ( b )  shows the stroboscopic displacements 
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location or by averaging over x at fixed y, z, and t .  An explicit examination of 
this difference is given below in a particular case. 

Consider the peristaltic pumping of a two-dimensional channel of constant 
pair width with a pair of symmetrically posed sinusoidal progressive waves 
moving down the opposite walls as is discussed in the paper of Pung & Yih 
(1968). Let us consider the motion of the particles on the centre line, y = 0. 
In  the case of 'free pumping' (in an originally stationary fluid) these particles 
move in the axial direction with the velocity 

u(x,  0, t )  = &e[@;(O) eia(z-t)+ @T'(o) e-ia(z-t)] 

+ &e2[@'go(0) + @L2(0) ezia(x-t)+ @*'(O)  22 e-zia(z--t)] + O(e3). (A 2 )  

The functions 
mean velocity is 

(Dm(y), etc., are given in the reference named above. The 

U ( 0 )  = $E2@;o(0). (A 3) 

On the other hand, for aiparticle located at x = a, y = 0, when t = 0, the tra- 
jectory x(a, 0, t )  must satisfy the equation 

&(a, 0, t)/dt = u[x(a, 0, t ) ,  t ] .  (A 4 )  

Substituting u(x, 0, t )  fromIthe right-hand side of (A 2) ,  integrating with respect 
to t ,  and noting the initial position x = a, one obtains 

I x(a, 0, t )  = a+eRe @ ; ( O )  eia[Ha,o,t)-tldt 

A first approximation is obtained by substituting a for x in the integrals in (A5). 
A second substitution yields the second approximation 

x(a,O,t) = a+eRe 
ia 

Hence we obtain the stroboscopic velocity at  t = 2nrr/a: 

V(a,  0, t )  = (a/2r) {.[a, 0, (n + 1) 2r/a] - x[a, 0, n2r/a]) 

= &2{@'bO(O) + l@;(o)12} 

= U ( O ) + s ~ ~ @ c D ; ( O ) ~ ~ .  (A 7) 

In  the case of zero net volume flow, U ( 0 )  is negative, but V(a, 0, t )  is positive be- 
cause of the last term. 
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This analysis shows clearly the mechanism with which the fluid particle 
moves against the stream. The large (first order in E )  sinusoidal oscillation makes 
no net contribution t o  the mean motion a t  any location, but every fluid particle 
is carried by this first-order term to move in a nearly elliptical trajectory with 
a major axis proportional to E ,  which is much smaller than the wavelength 
%/a. The particle on this trajectory is displaced out of phase with respect to the 
wave motion, and no longer sees the velocity field as harmonic. In this way a non- 
vanishing second-order stroboscopic velocity is obtained. 
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FIGURE 4. Photograph of the apparatus. A, Test section; B, Plaster blocks; C, Timing 
belt; D, Variable speed motor; E, Upstream reservoir; F, Adjustable standpipe in down- 
stream reservoir. 

(Facing $3. 112) 
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FIGURE 6. Distortion of a fluid line under zero mean imposed pressure gradient conditions. 
Photographs a t  two second intervals starting from rest. Waves moving from right to left. 
Numbers below photos denote the approximate beginning of successive wave periods. 
Parameters: l?, = 0.6, a = 0.57, E = 0.2.  

YIN AND FuNG 
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FIGURE 7.  Distortion of a fluid line under zero volume flow conditions. Photographs at 
two second intervals starting from rest. Waves moving from riglit to left. Numbers below 
photos denote the approximate beginning of successive wavo periods. Parameters : 
Re = 0.6, a = 0.57, E = 0.2. 


